Math 210B Lecture 22 Notes

Daniel Raban

March 4, 2019

1 Norm, Trace, Characters, and Hilbert’s Theorem 90

1.1 Norm and trace

Definition 1.1. Let E/F be a finite extension. For a € E, let mqy : E — E be x — x4.
The trace trg/p : £ — F and norm Ng/p : E — F send a — tr(mg) and a — det(ma),
where we view m, € Endp(F) as a matrix.

Remark 1.1. my4g = mq+Amg, so the trace is a linear map. The norm is multiplicative
because mqg = mq 0 mg.

Proposition 1.1. Let E/F be finite with x € E. Then

Npwe)= [ e@¥= J[ o@®"

oc€Embr(F(x)) c€Embr(E)
trgp() =N > o) = > o) | [E:Fl
oc€Embp (F(z)) oc€Embp(E)

where N = [F(x) : F|;[E : F(z)] = [F(x): F|;[E: F(x)|;[E: F(z)]s
Proof. In each case, the second equality follows from

N =[F(x): F|;|E : F(x)]
=[E: F|;|[E: F(x)]s.

Case 1: E = F(z): Let n = [F(x) : F], let fy(t) = > I ,a — it" be the minimal
polynomial of z over F. We can write fo(t) = [[yepmbp (@)t — o(z)F@:Fli - Let g



be the basis {1,z,...,2"" 1 of F(z). We want to show that f,(¢) is the characteristic
polynomial of m,. The matrix of m,, is

0 0 0 —ag
1 —aq
[malp =] 1 :
—0n-2
L 1 —Qp—1 |

Then the characteristic polynomial of m, is > ;" a;t’. So
tr(p/p(x) = tr(ma) = —an-1 = [F(x) : Fli Y Opetmbp(F()) (©)
c€inEmbg(F(z))

For the general case, let {y—1,...,y;} be an F'(x)-basis for E. Then F = @le F(x)y;.
is a decomposition into m,-invariant subspaces (k = [E : F(z)]). So 8 = {z'y;} is a basis
for E/F, and

My
my
[malp =

My

is block diagonal with blocks of the type of the previous case. So
tr(my) = [E: F(2)][F () : F]iZ%eEme(F(x))(w)

det(my) = H o (z)EF@IF@):Fli -
o€Emb (F(z))

Corollary 1.1. Let E/K/F be finite. Then
NK/F = NE/F © NK/Ea

trK/F = tI'E/FOtI'K/E.

Proof. Let x € K. Then

Ng/p(Ng/g) = H o H ()

UEEme(E) TEEmbE(K)



Any ¢ : K — F can be written as 6 o 7 for some unique |sigma € Embg(E) and 7 €
Embp(K).

Y F

Then 7 = po ! fixes E. So

p€Embp (K)

m—

1.2 Characters and Hilbert’s theorem 90

Theorem 1.1 (Hilbert’s theorem 90). Let E/F be finite, Galois with cyclic Galois group
G = (o). Then
ker(Ng/p) = {o(z)/x:x € E*},

ker(trg/p) = {o(z) —z:x € E}.

The D containments require no conditions, so we need to prove the other containments.
To prove this, we need a bit of character theory.

Definition 1.2. Let G be a group, and let E be a field. A character on G with values
in F is a group homomorphism y : G — E*.

The set of all characters charp(G) C Fun(G.E) is subset of an E-vector space.
Lemma 1.1. charg(G) is linearly independent.

Proof. Let {x1,...,Xm} be a minimal linearly dependent set. Let Y :°, a;x; = 0 with all
a; # 0. Choose h € G such that x1(h) # xm(h). Let b; = a;(xi(h) — xm(h)) € E; then
b1 # 0 and b,,, = 0 (by definition). Now for g € G,

m—1 m—1
> bixilg) = Y a—ixi(h)xi(g) — aixm(i)xi(9)
=1 =1

m—1 m—1
i=1 =1

= —ame(hg) - Xm(h)(_ame(g))
= —amXm(hg) + a — mxm(hg)
= 0.

This contradicts the minimality of {x1,...,Xm}- O



We can now prove Hilbert’s theorem 90.

Proof. We want to show that ker(Ng,r) = {o(z)/x : © € E*}. Take x € ker(Ng/p). Then

n—1 [i—1 A ‘
w=3 (T[]
=0 \7=0

is a character. Then
Xz(y) =y + z0(y) + z0(2)0”(y) + - + 20 ()0 (2) - - 0" ()" ().

The idea is we want to find a fixed point of applying ¢ and multiplying by x. This is
because if y # 0,
x:w = =0 e o(y)z =y.
y a(y)
For all y € E, we have that xo(x2(y)) = xz(y). If x.(y) # 0, we are done because
r = Xz(y)/0(xz(y)). So xz is a nonzero linear combination of distinct characters and is

hence nonzero by the lemma. Thus, there exists y € E* such that x,(y) # 0. ]

We will do the trace next time.
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